Further Development of the Theory of Arithmetics of Algebras

ثبت نشده
چکیده

The writer recently* gave a new conception of integral elements of a rational associative algebra A having a modulus 1, which avoids the serious objections against all earlier conceptions. The integral elements of A are defined to be the elements which belong to a set 5 of elements having the following four properties: C (closure) : The sum, difference and product of any two elements of 5 are also elements of S. R (rank equationf) : For every element of S, the coefficients of the rank equation are all ordinary integers. U (unity): The set contains the modulus 1. M (maximal) : The set is a maximal (i.e., is not contained in a larger set having properties C, R, U). It is proved in §2 for the first time that there exists a set of integral elements in any rational algebra. The above conception of integral elements may be extended to algebras over an algebraic field (or any field for which the notion of integer is defined). In particular, quaternions over any quadratic field are investigated in §§ 4-9.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Deformation Theory of Lie Algebras

This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...

متن کامل

DEVELOPMENT IN STRING THEORY

The string theory is a fast moving subject, both physics wise and in the respect of mathematics. In order to keep up with the discipline it is important to move with new ideas which are being stressed. Here I wish to give extracts from new papers of ideas which I have recently found interesting. There are six papers which are involved: I ."Strings formulated directly in 4 dimensions " A. N...

متن کامل

f-DERIVATIONS AND (f; g)-DERIVATIONS OF MV -ALGEBRAS

Recently, the algebraic theory of MV -algebras is intensively studied. In this paper, we extend the concept of derivation of $MV$-algebras and we give someillustrative examples. Moreover, as a generalization of derivations of $MV$ -algebraswe introduce the notion of $f$-derivations and $(f; g)$-derivations of $MV$-algebras.Also, we investigate some properties of them.

متن کامل

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

Some properties of nilpotent Lie algebras

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

متن کامل

Filter theory in MTL-algebras based on Uni-soft property

‎The notion of (Boolean) uni-soft filters‎ ‎in MTL-algebras is introduced‎, ‎and several properties of them are‎ ‎investigated‎. ‎Characterizations of (Boolean) uni-soft filters are discussed‎, ‎and some (necessary and sufficient) conditions‎ ‎for a uni-soft filter to be Boolean are provided‎. ‎The condensational property for a Boolean uni-soft filter is established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010